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A METHOD FOR CONTINUING FAMILIES OF PERIODIC SOLUTIONS 
OF LAGRANGIAN SYSTEMS* 

S.R. KARIMOV and A.G. SOKOL'SKII 

An autonomous multidimensional Lagrangian system of differential equations 

depending on parameters is considered. A predictor-corrector method is 
proposed for constructing a family of periodic solutions (including 

retrograde solutions) obtained from a given solution by variation of the 

parameters. 

In the context of the wide range of problems in classical and 

celestial mechanics that are described by Lagrangian systems of differential 

equations, it is particularly interesting to study non-isolated periodic 
solutions of such equations, parametrized by both extrinsic and intrinsic 

parameters (the latter are represented by the initial conditions of the 

solution, such as the energy constant). A family parametrized by the 
energy constant is known as a natural family /l, 2/. 

The classical example of a natural family of periodic orbits is 

provided by the Lyapunov periodic motions /3/ originating from the 
equilibrium position of a Hamiltonian system. Existing methods of 

investigating them /4, 5/ are based on the introduction of local coor- 

dinates in the neighbourhocd of a periodic solution and subsequent 

normalization of the equations of the perturbed motion, and the construc- 

tion of the solution as a series with respect to a small parameter, where 

the latter characterizes the deviation of the motion from the equilibrium 

position. 

In a more complicated situation the generating solution is known 
only in terms of its initial conditions and period, the solution itself 

being obtained by numerical integration of the original system. Consequently, 

any method for continuing a (not necessarily Lyapunov) family by expansion 

with respect to the parameters is necessarily numerical. 

On the available variety of such methods we mention a series of 

papers by Sarychev and Sazonov (for references see /6/j, who have worked 

out a highly efficient method for solving the boundary-value problems 

that arise in this context. This paper draws on ideas similar to those 
of /7-g/**, (**See also Sokol'skii A.G. and Khovanskii S.A., A computation 

algorithm for continuing periodic solutions of two-dimensional Bamiltonian 

systems as functions of the parameters, Eloscow, 1~1, 1986. Deposited at 
VINITI, 4.06.86, 4042-86.) where a predictor-corrector method for con- 
tinuation of periodic solutions is worked out for systems with two degrees 

of freedom. This method will be generalized here to multidimensional 

systems, forwhichBirkhoff's theorem about the reduction of a two-dimen- 

sional system to canonical form is no longer valid; it is nevertheless 

possible to reduce the boundary-value problem to a Cauchy problem by a 

special choice of local coordinates. 

1. Formulation of the problem. Consider a generalized conservative mechanical 
system with J + 1 degrees of freedom, depending on K--l parameters. Its Lagrangian 
has the form 

J+l J-L1 

c l,i (9, P) qt’qt’ + )’ 1, (93 P) q; + cl (91 PI 
j. %=I js$ 

q = (Q1* f . . . qJ+l)=, q’ = @I’, . . .v qJdT, p = (PI, . . ., p ,-I)~ 
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Here q. q’ are the generalized coordinates and velocities, p are the parameters of the 
system, and iii, lj, 2, are sufficiently smooth (in particular, analytic) functions af their 
variables, such that the matrix L = {lji> is symmetric and positive-definite. 

The corresponding system of equations admits of a Jacobi-type energy integral: C= 

+ q‘T&‘ - 10, where C = h is the energyconstant,which depends on the initial conditions. 

If the energy constant is fixed (i.e., the only motions considered are those confined to the 
hyperplane iz --:: const), we may treat h as an additional parameter of the mechanical system, 
all other motions of which are derived (parametrized) from these motions by varying h. Thus, 
we put ph‘ = k, so that p is now a K-dimensional vector; in addition, we put 1 = (6,, . . ., 
b+dT, W(q,pl= 1, i f$ (this will enable us later to confine our attention to cases in which 
the energy integral is identically zero). 

In the notation just described, the Lagrangian and energy integral are written as follows: 

L* =1+ q.TI,q’ + Vq’ +” w (I.11 

c = -& q’TLq^ - tv s 0 (1.2) 

The equations of motion are 

Suppose that for some fixed parameter vector pzp the initial values are known for 
some solution of Eq.il.31, say 

q -7 Q (t, V, q‘ = Q’ 0, P) (1.4) 
where the solution has a period T = T(P), i.e., 

Q (O,Pl I-= Q (T,Pf, Q'P,P) = Q- (T, PI (1.3) 

1n this situation the functions (1.4) themselves may be determined by numerical inte- 
gration of Eqs.(l.3) in the interval t E [ct. r1. 

The problem we consider is to construct and investigate periodic solutions which are 
analytic continuations (with respect to the parameters) of (1.41, i.e., we wish to determine 
solutions 

9 = q (t, ph q’ = 9. (t, Pf (i.(i) 

such that 

lim k (t, p) = Q ft, Pf, Km q' (1, p) = Q' (G P)t 
lim T (p) = T (P) (p+P) 

q (0, P) = q (T (P), P), 9’ (0, P) = 9’ v (Ph P) 

Eqs.11.8) are the periodicity conditions. Conditions (1.71 state that the solution (1.6) 
belongs to the family of periodic solutions generated by the solution (1.41. If there are no 
solutions (1.6) satisfying conditions (1.7) and (1.8), we shall say that the family is "dead" 
11,'; if there is more than one solution satisfying the conditions, we shall say that the 
family branches. 

This formulation of the problem is essentially the same as the classical one. The most 
popular method for solving it is the small-parameter method, where the question of existence 
and branching is adequately answered by Poincare's Theorem and its extensions. The con- 
ditions derived below far the existence of a family are analogous to Poincare"s conditions. 

Note that it will be sufficient to determine not the solutions (1.6) themselves, but only 
initial conditions q @,p), q f&p} satisfying the periodicity conditions f1.8) and continuity 
conditions (1.7) at ~ZZ 0. IR addition, it should be noted that the numerical approach to the 
solution of our problem obliges us to replace the infinitesimal increments of the parameters 
under these conditions by small but finite increments. If this is indeed done and computations 
show that tile family is "dead" (or branches), one must then take smaller increments and repeat 
the computation. Whether the goal can be attained in a finite number of steps depends on the 
capacity of the available computers+ 

2. Introduction of local toordinaees. Let (1.4) be a known solution of Eqs.11.3) 
with integral (1.2) and parameter values P. Let (1.6) be another solution of EqS.(l.3), 
corresponding to parameter values p. h7e put 

n=p-P, E=q-Q (2.1) 
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We shalluse this setup in three versions: in stability analysis, in the predictor part 
of the method and in its corrector part. The equations for the local coordinates E (and for 
the relevant transformation of the equations) will be analogous in all three cases. We 
therefore proceed at once to a uniform presentation of the formal arguments and transformation 
of the equations. 

For the moment, let us assume that the increments II: and g are independent and small to 
the same order of magnitude. Retaining only first-order terms in the expansions, we obtain 
the following linear equations for g: 

:" = fpE -+ fQ.K + f&a (2.2) 
fQ = afBq/,, fp- = &'~q*l,, fp = dl!dpj, 

where the zero subscript means that after differentiation we substitute q =Q, p =P, i.e., 

r; = 0, Tc = 0. 

Eqs.(2.2) admit of the following integral, obtained from (1.2) by retaining first-order 
terms: 

w=gpg+g&-+gp3cEO 

gQ = + Q’TL& - wp, 6Q’ = Q‘=L, & = + QeTL,Q - wp 

LQ = C%/dql,, JvQ = aw/aqlo, &I = %/+I,, 

wp = awlapl, 

(2.3) 

Put 

(2.4) 

i.e., V is the absolute value of the instantaneous velocity along an orbit. 
We shall assume that (1.4) is not an equilibrium position (otherwise one can apply the 

methods of /4, 5.~'). Consequently, V(t)+ 0. we shall also assume that throughout the orbit 

v (t) # 0. 
Under these assumptions, there is a tangent at very point of the orbit in configuration 

space. We may therefore attach a moving system of coordinates totheorbit: one of the axes 
isdirectedalong thevelocityvector Q’ and the others lie in the plane normal to the orbit. 

Let S be the transformation matrix to the new coordinate system; let its last column 
s (t) = Q’ (t)lV (t) be the unit vector tangent to the orbit, while the first J columns Sj (i = 
1 J) lie in the plane normal to the orbit, i.e., 
Tk'dlbit Q(t) in the configuration space {Q}, 

they are orthogonal to the vector s. 
its tangent and its normal (hyperjplane at 

time t and the new basis vectors 51, . . ., sJ, s are shown in Fig.1. 

Fig.1 

Thus, 

S = {R, s}, R = {I~. . . ., s.,}, dim R = (J + 1) X J (2.5) 

STS = 1, RTs = 0, S-G = e = (0, . . ., 0, l)T 

In addition, let R*denote the matrix S-r without its last 
column S*,i.e., by (2.5), R*s = O,s*s = 1. Incidentally, in 
practice it is convenient to let S be an orthogonal matrix, but 

this will not be necessary here. Clearly, if (1.4) is a periodic 
solution then the matrix S will also be periodic. 

Let x denote the vector of local coordinates in the new 
coordinate system; we express it as 

n 
x= 3 

0 m 
dimn= Jxl, dimm=fxl 

In geometrical terms, this means that m is a displacement (or perturbation) along the orbit 
and the components of II. are displacements (perturbations) along the normals to the orbit. 
The relationship between the old and new local coordinates is given by the formulae 

5 = &'x = Rn +- sm; x = LPs; n = R*g, m = s*g (2.6) 

F; = s’x + St = R’n + Rn’ + s’m i- sm‘ 

Substituting these expressions into the integral (2.3), we obtain 

(2.7) 



w - g,n + g,a’ + g,m -t g,m’ + gprc = 0 

g,, = gc$ i- ~Q.R’, gn* = &TQ.R 
g, = ggs + gQ@‘, &n- = srt_s 

(2.8) 

Using formulae (2.3) and the relations 

c = Q*%Q++Q’(~QQ’)Q’--QQ’= 

Ii [li’$ts + gQs _t gQ’s.1 IO, sTh = 2w/!'-* 

we can write the integral f2.8) as 

(259 

w = (ns*V- nV’).2WlV1+ g-n -j- g,+n' + gpjr F 0 (2.10) 

We will now set up the equations for the new local coordinates, using the fact that 
sx** = F' - 2s'x' - s"x. Substituting expressions (2.21, (2.6) and (2.7) into this equation, 
we obtain 

Sx" = (fp R + fp.fi’ - R”) II + (~Q.R - 28') n' + 
@Qs -I- fps’ - s”) m f t&s - 2s') n' +- fpjt (2.11) 

Noting that 

Q”’ = f' = fQQ’ +” fqQ” = (VfQ + V’fQ’) s + PfQ’s’ (2.12) 

we conclude that the vector coefficient of m in (2.11) has the Eorm -(~//V)(fp~.--2s')+(~/V)s 
(compare with the coefficient of na'f. Thus, after substituting the expression for m'V--V 
from the integral (2.10) and the expressions (2.81 into (2.111, we obtain the following 
equations: 

X" =: F[F,>n + FIl,n' + t;r -F- (V"/V) msj (2.13) 

F,, = [rQ - f&Q] R + if4. - f&~l fi' - R"* 
f, = (V/ZW)(f@- 2s') 

F,,. = ffq - f,s~*] R - 2R’, F, = fp - f&p 

Recall that S's =e (see (2.5)t. it is therefore obvious that instead of system (2.13) 
we can consider the following two linear equations: 

II" = R*[E,n $ P,a' + F,n] (2.13 

m" = (V"/V)tn + s* [F,,n + F,,.n' + i?dxj (2.15) 

A remarkable property of Eqsls. 12.14) and t2.15), in fact the motive for the transformation 
(2.61, is that the equations for the normal coordinates n are independent of the tangential 
coordinate m. This means that one can first determine the normal displacements (perturbationsf 
n and then, using the resulting n, the tangential displacement (perturbation) m. 

3, Predictor. Thus, let (1.41 be a known T-periodic solution of Eqs. (1.31 withintegral 
(1.2) and parameter values P. Assume that for parameter values p = P _ts, where s are 
given parameter increments, there exists a periodic solution (1.6) satisfying the eontinuity 
and periodicity conditions (1.7) and (1.8). Our aim is to find (1.6). The algorithm for 
continuation with respect to the parameters falls into two stages, First (predictor) one 
finds corrections, linear in the parameter increments, to the initial conditions and period; 
then (correctorf one brings into play the non-linear nature of the corrections, having con- 
structed a convergent iterative procedure in this section we will describe the predictor part 
of the method. 

Introduce displacements f (local coordinates) in accordance with formulae (2-l) and 
express the new period its T* = T j-z, where T = T fP)$ T* = T(p). We shall treat 8 and r 
as first-order quantities with respect to s. The displacements will then satisfy Eqs- (2.21 
with integral (2.3). After introducing the normal and tangential displacements n and m in 
accordance with the formulae of Sect.2, we arrive at Eqs.(2.14), (2.10). All the coefficients 
of n and m in these equations are T-periodic. 

Using the periodicity of the solutions (1.4) and (1.6) and retaining only first-order 
terms, we obtain the following boundary conditions: 

D (0) = n (T), n' (0) = n- (T) WI 
m (0) = m(T), nd 40) = m'(T) +- tr (0)t @*2f 

Express n,na,r as linear combinations of the varied parameters: 



K K x 
II = B ll(k)aTk, m = x mWck, z = x dkhk (3.3) 

k=l k=l k-l 

and substitute these expressions into Eqs.(2.14), (2.10) and the boundary conditions (3.11, 
(3.2). Using the independence of the parameter increments xx , we obtain K sets of such 
relations. 

We will first consider the boundary-value problem for the normal displacements: 

.2&G) = u 
v(k) (0) = v(k) (T) 

(3.4) 
I 

(3.5) 

where FXk is the k-th column of the matrix F,in (2.13), i.e., the result of differentiating 
the corresponding functions with respect to the k-th parameter pk only; EJ is the identity 
matrix of order J. 

The boundary-value problem (3.4), (3.5) can be reduced to a Cauchy initial-value problem. 
Indeed, the general solution of the inhomogeneous Eqs.(3.4) can be written as 

v(k)(t) = N(t)vck) (0) + v'""'(t) (3.6) 
Here N (t) is the matrix of fundamental solutions of the homogeneous system normalized by 
the condition N (0) = E,,, v(k) (0) are the initial conditions for V(k) (t), v (%) (t) is a particular 
solution of the inhomogeneous equations with zero initial values, i.e., vcnkJ (0) = 0. sub- 
stituting (3.6) into the boundary conditions (3.5), we have 

v(k)(O) = - [N(T) - E,~]-lv(~k)(T) (3.7) 

Thus, (3.6) with the vector (3.7) is a solution of the boundary-value problem (3.4), 
(3.5). 

To find the variation Z in the period, we rewrite the coefficient of sk obtained from 
Eq.(2.10) as follows: 

m'(k) = F m(k) - &[g,v(") + gs,] (3.8) 

where gv = k,, a,.) and gp, is the k-th element of the matrix row gpin (2.3). Substituting 
the solution (3.6),into (3.8), we obtain the general solution of Eq.(3.8) in the form 

rnck) (t) = (V (t)/V (0)) rnck) (0) + p (t) 0 (0) + y(‘k) (t) 

where the row vectors p (t) and &'k) (t) are solutions of the following Cauchy problems: 

pL’(*k) = (V./V) p(“k) - (V/2w) [&J(“k) + &,], ~tcnfi)(0) = 0 

The initial displacement m(k) (0) may be equated to zero, since displacement along the 
orbit does not affect it. Then, from the first periodicity condition (3.2) we obtain m(k)(O) = 
m(k) (T) + V (0)~ , and consequently, 

r(k) = - m(k) (T)/V (0) = [p (T) v(“) (0) + pcnk) (T)]/V (0) (3.10) 

Direct differentiation of solution (3.9) shows that the second periodicity condition 
(3.2) is automatically satisfied if rck) is chosen in accordance with (3.10), and moreover 

m(k) (0) = 0, m’ck)(0) = (- V (0)/(2W(O))) [& (0)vck) (0) + gpk 01 (3.11) 

Thus, to determine the new periodic motion one must integrate the following system of 
equations from t = 0 to t=T: 

Q”=f(Q,Q’,P) (3.12) 

I/ 0 EJ 
N,’ = R+F, R+F,,. NJ, I NJ co) = eJ 

(j = 1, . . ., 21) 

(3.13) 

,,“=k) = ’ fiJ /Iv’nk)+//R:Fnkj, dnk’(0)=O 
R*F, R*F,; 

(3.15) 



In these equations we have used the notation &J = h . . ., ezJ)+ A -= {N,, _ . ., N,.,), p = 
{PI. . . -t t.Q:, while the initial conditions Q(O), Q'(0) are of course considered to be known. 
The order of the system is 2 (J + I) -+- 2J (2J + 1) + (2J -+- 1)K., 

Integration of this system of equations yields N(T), ~'~fi' (T), l& (Z'), ~'~k' (T), and formulae 

(3.7)‘ (3.11) and (3.10) may then be used to compute n(g) (0), n’(k) (0), ~a’(~) (0) and 7'ii) * 
Formulae (3.3) now yield n (O),il'(O), m(0). EL' (0) and T, and these in turn, through formulae 

(2.6) and (2.71, give 8 (0), c (0). 
Finally, the initial values and period of the new periodic solution for parameter values 

p=YSJc are found from the formulae 

p(O)= Q(O)+ g(O), q'(()) = xq'*('$ T* = T (p) = i” -t- z 
(3.17) 

The correction factor x has been jntroduced here to ensure the validity of the energy 

integral (1.2); if it were true that xa= 1 in (3.17), we would have C#O in (1.2), since 
t&e predictorgivesonly approximate values of the displacements in the initial conditions. 

4. Corrector. Orbits with initial conditions (3.17) are only approximately periodic, 

i.e., the differences 9 (T*)- q (O),q’(T*)- q’(0) do not vanish, but they are small to 
second order with respect to the parameter increments x at the preceding step. The accuracy 
of the initial conditions and period is improved through the use of the corrector procedure. 

Suppose now that (1.4) is a periodic solution of Eqs.(1.3), but such that in its neiqhbour- 
hood in the phase space there is a periodic solution (1.6) corresponding to the same parameter 

values. Our aim is to find the latter, taking the former as an initial approximation. 
Introducing local coordinates (displacements) in accordance with (2.11, we assume that 

SE0 and look for displacements in the initial conditions ~(O),~(O) and period Z. 

The displacements E (t) satisfy Sqs.(2.2) with integral (2.3). Introducing normal 

and tangential displacements n and m in accordance with formulae (2.61, we arrive at Eqs.(2.14) 

and (2.10). 
me shall assume that the quantities AQ = Q(T)- Q(O)# 0, AQ’ =Q’ (T) - Q’(O)+ 0 are 

small to the same order of magnitude as E> j', z. The boundary conditions for Eqs. (2.14), 

(2.10) are as follows: 

n (0) =n (T)+ R' (WQ (4.1) 
II' (0) = n‘ (7’) + R’* (0) AQ -!- R* (0) AQ’ 

m (0) = m (T) + V (0)~ + s+ (0) AQ (4.2) 

m’ (0) = m' (T) -I- v' (0)~ + s'* (0)AQ -i- S* (0) W 

where R'* are the first 3 rows of the matrix dS_';clt and . s'* is the last row of the same 

matrix. 

As in the predictor, the general solution of Eqs.(2.14) is expressed in the form (3.6) 

(of course, we must omit the superscripts X.;v@k)sa 0). It then follows from the boundary 

conditions (4.1) that 

(4.3) 

How consider the boundary-value problem for the tangential displacements. Substitute 

the above normal displacements into (2.10). The general solution may then be written as (3.91, 

again omitting the indices k and putting &W E 0. 

The initial displacement along the orbit may again be equated to zero: 

m (0) = 0, m' (0) = -(V (0)/(2~(O)))gv (otv (ot (4.4) 

Then, from the first periodicity condition (4.21, we obtain the variation in the period: 

r = -[cl (T)v (0) + s* (0) AQllV (0) (4.5) 



Direct differentiation now shows that the second boundary condition (4.2) is satisfied to 

the required degree of accuracy; the residual thus obtained may serve as a criterion for the 

accuracy of the corrector procedure. 
Collecting all results of this section, we see that in order to determine the displacements 

in the initial conditions and period one must integrate a system of order 2 (J + 1) + 2J (2J + 
I), namely equations (3.12)-(3.141, from t=O to t=T. After integration one can use 
formulae (4.3)-(4.5) to calculate n (0), n’(O), m(O), m’(O), subsequently obtaining the displace- 

ments 6 (O), g (0) and new initial conditions by means of formulae (2.6), (2.7) and (3.17). 

The accuracy of the corrector procedure is determined by the relative error (where %t sa 
are weighting factors) : 

E = lE1 1% (0)1/l q (O)l + e, 16’ (O)Vl q’ Oil (4.6) 

If E turns out to be smaller than the prescribed a*, the quantities (3.17) are accepted 

as the initial values and period of the required periodic solution. If the error (4.6) is 

still too great, one puts Q (0)= g (0), Q’ (0) = q’ (0), T = T* and repeats the corrector pro- 

cedure until &< E’. Note that the corrector as described guarantees accelerated quadratic 

convergence of the Newton type. 

5. Retrograde periodic solutions. It was assumed previously that the velocity 
vector does not vanish at any point of the orbit. We shall now see how to relax that assump- 

tion and thereby generalize the method. 

Let (1.4) to be a T-periodic solution (orbit) of Eqs.(1.3) with integral (1.2) and fixed 

parameter values P. Suppose that it is not an equilibrium solution, i.e., in (1.3) we have 

f (Q, Q’, P) f: 0 for Q' = 0. Thus, at points of the orbit where the velocity Q vanishes, 

the acceleration vector Q" does not vanish. 

Let ti be the times at which that happens (we may assume without loss of generality that 

tl#O), i.e., 

Q’ (ti) = 0, (I” (Li) # 0, i = 1, ., 1, 0 < tl < . . < tr < T (3.1) 

This means that in the configuration space {Q) the point Q(ti) lies on the (hyper)surface 

of zero velocity W(Q, P)= 0 (see (1.2)), whereas the points Q (t) , 0 < I t - ti I < E , do 
not. 

In the neighbourhood of ti the vector function Q’ (t) and its absolute value I Q’ (41 
admit of series expansions 

Q’ (t) = Q” (ti) (t - ti) + + Q"' (ti) (t - t$ + 

$ Q”” (ti) (t - tiy + . . . (5.2) 

Thus we cannot speak of the existence of a limit 

However,'itmhe~dt)are one-siiid limits 
as t--f t. where s (t) = Q (t)/I Q (t)) 

is the unit vector tangent to the orbit. 

lim s(t)= -tl;~O~(t)= *fO 
t-y-0 

(5.3) 
-1 I 

i.e., the tangent vector s(t) experiences a discontinuity of the first kind of t=ti; in 

fact, it reverses direction when going through ti. Consequently, Q (ti) is a cusp of the 

orbit Q (t), and the normal (hyper)plane at that pointcoincideswiththetangent plane to the 

surface FV (Q) = 0. In other words, the orbit "falls" and is "reflected" from the zero 

velocity surface in the direction of the normal to the latter /l/. 
We shall show that this "normality of falling and reflection" property can be used to 

apply the corrector-predictor method in the case of retrograde solutions. 

Let the orbit have a cusp t = ti at which conditions (5.1) are satisfied. Instead of 

(2.4) we define a new function: 

w)=W)lw~)I. Iwt)l=~W-(t)~~w (5.4) 
* 1, O,<t<t, 

- 1, h-(_ t < t2 
. . . 

s(t) = * (- I){, ti <t < ti+z (5.5) 
. . . 

,(- i)z, tr < t < T 

Clearly, the function (5.4) is continuous for all t E [O, Tl, vanishing only at t = tt. 
Its expansion in the neighbourhood of the point ti, i.e., for t- til<e is 



V (t) = 6 (t) 1 t - ti [ Iv’ (ti) + + V” (t*) (t - tt) + 

+ v- (t*) (t - t,y + . . .) 
V’ (TV) = 1 Q” (ti) I = 1/Q"' (td Q" (td P 0 

V” (tl) = + Q-TQ" I,=,, 
V”’ (t*) = [+ 

Q . . . . TQ” + & Q”.TQ”. 

- & (Q-TQ-Y] It_,, 

(5.6) 

Consequently, v 0) is analytic for all t E [O, Tl. 

As before, we define the tangent vector s(t) by the formula s (t) = Q' (Q/V (t). Then 
the vector function s(t) becomes analytic at TV [O, Tl, and at t = ti we have 

(5.7) 

It is clear that s 0) is simply the vector function defined in Sect.2 multiplied by 

6 0). 
As in Sect.2, we let S(t) denote the non-singular transformation matrix to the new 

basis; its last column is s 0). In fact, s 0) is simply the product of the analogous 

matrix in Sect.2 by 6 (t). All previous properties of S are preserved, as is the form of the 

equations for the normal and tangential displacements. Note that S (0) = (--1)‘S(T). 
Fig.2 illustrates the orbit Q (t) in the configuration 

t, -0 t, +fl 

& 

space {QI, and its normal (hyper)plane at the time t = tie The 

orbit does not cross its normal plane - the plane tangent to the 
x+ surface W = 0 - but is "reflected" from it. It is obvious that 

at t=ti-0 and t=ti+o the basis vector (indicated by 

J?+ 1% 
superscripts minus and plus) reverse direction. Flowever, this 

l' : 
singularity has been removed by introducing the function 6 (t). 

,' ,I 
The right-hand sides of Eqs.(2.14) for the normal displace- 

G I 
ments do not involve singularities. 

s, Indeed, it follows from the form of the function F,,, F". 

and F., that there may be a singularity only in terms of the 
J- form 

s-1 (Vl(2LV)) (fo.S - 2s.) = s-'is (5.8) 
Fig.2 provided that at f = ti the function v (fi has a first-order 

zero and w(t) a second-order zero. The suspicion therefore 

arises that the term (5.8) involves a first-order pole. This is not the case, however. In 

fact, in deriving Eqs.(2.13) from (2.11) we used the relationship 

where V is now defined by (5.4). Using the property 9's = e (see (2.5))) we replace (5.8) 

by 

or, finally, 

i 
R’f, = - $z- - 

STLS R* (fQs + f,p’ - s”) 

We have thus shown that in the case of retrograde periodic motions the right-hand sides 

of the equations for the normal displacements do not involve singularities. 

In practice, however, there is no need to use formulae (5.7), (5.6) to calculate the 

vectors s, s', s" at t = ti . It suffices to evaluate them at a few points t<ti and 

t> ti, and then use a suitable interpolation formula. 

We will now consider the equation for the tangential displacement (2.10). To apply the 

corrector-predictor method we must find a particular solution with initial value m (0) = 0. 

Eowever, even computer-aided numerical integration of this equation may prove quite difficult, 

since the coefficient of the highest-order derivative vanishes at t= ti. It is therefore 

preferable to integrate the second-order equation obtained from (2.11): 
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m” = s*[(f~s + fp.9’ - s”)m + (fa.8 - 2s')m' + 

(fQR + fqR’ - R”) n + (fqR - 2R’) d + fpx] 
m(o) = 0, m'(O) = - (V(0)/(2W(0)))[gn(O)n(O)+ 
.c 6') n'(O) + go (0) n] 

which involves no singularities. 
Finally, we willconsiderthe changes in the boundary conditions in the case of retrograde 

periodic motions. It follows from the formulae s(O)=(--l)JS(T), V (0) = (-i)'V(T) that in 
the boundary conditions (3.1) and (3.2) for the predictor and (4.1) and (4.2) for the corrector 
the displacements II (Z'), n'(T), m (Z'), m'(T) appear with a factor (-!)'. We must therefore 
introduce this factor (-1)' before the functions evaluated at t = T in Eqs.(3.?), (3.10), 
(4.3) and (4.5). 

Thus, the algorithm has been fully generalized to the case of retrograde motions. 

6. Stability. We will now briefly discuss the question of the stability of a given 
T-periodic solution (1.4). To this end we introduce perturbations 5 via formulae (2.11, 
assuming the parameters to be fixed, i.e., n=O in (2.1). Then the matrices fe,fQ. in 
the variational Eqs.(2.1) and the column vectors gQ* k?Q in their integral (2.3) are T- 
periodic. 

It is clear that a periodic motion is stable under perturbations 5, since its period 
depends on the initial conditions. However, one can consider the question of the oribital 
stability of a periodic motion /3/, i.e., we introduce perturbations n normal to the orbit, 
disregarding the question of stability under tangential perturbations m. 

Let X (t) be a matrix of fundamental solutions of system (2.13) (in which, of course, 
x 3 O), normalized by the initial condition X (0) = .%+, - the identiy matrix of order 
2J+ 2. We evaluate this matrix at t = 2' and set up its characteristic equation 

ZX (p) = dattt x (T) - p&J+,tI = 0 (6.1) 

Since the original system is Lagrangian, the characteristic Eq.(6.1) is retrograde /3, 
ll/, i.e., the characteristic polynomial can be written 

J-Q 

Ix M = f’, (P’ - 24P -t- 1) (6.2) 

Consider the structure of this polynomial. Since system (2.13) is equivalent to system 
(2.14), (2.151, we can verify that II (p) -Z,(p)Z,(p), where ZII (P) is the characteristic 
equation of system (2.14), which involves only the normal perturbations n,n'; Z,,,(p) is the 
characteristic polynomial of the second-order differential equation m" = (V' (Q/V (1))m. 
Direct integration of this equation shows that Z,(p) = pp- 2p +- i, i.e., as might be expected 
fl, 3/, the characteristic polynomial (6.1) has a pair of unit multipliers @3+x = pz3+* = 1. 
But then the characteristic equation of the normal perturbations may be written in the form 

where N 0) is a matrix of fundamental solutions of the variational system of normal per- 
turbations (2.141, normalized by the initial condition N(0) = EaJ. 

!Rms, we have proved the Lyapunov-Poincare' Theorem f3, 10, II/ for the normal perturba- 
tions, according to which the characteristic polynomial is retrograde. As a corollary we 
obtain a criterion for orbital stability to a first approximation: the motion willbe orbitally 
stable if and only if all roots of the equation Z,(p) = 0 (called multipliers) lie on the 
unit circle in the complex plane and the matrix N(T) is reduced to diagonal form. 

Note that the corrector procedure automatically calculates the matrix N(T) at the 
last iteration. One advantage of this method is therefore that no additional calculations 
are required to analyse the stability of the motion to a first approximation, other than the 
construction of the motion itself. 

We append a few remarks as to the limits of the applicability of our predictor-corrector 
method. 

lo. If the matrix IIN( EUO is singular, the initial conditions for the normal dis- 
placements cannot be determined through formulae (3.7) and (4.3). The equality detjN(T)- 
EM/==0 means that the matrix N(T) has an eigenvalue equal to one, and since the 
characteristic Eq.(6.3) is retrograde the root PI= 1 must have even multiplicity. A periodic 
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solution of this type is naturally called critical /2, 3,'. If a periodic solution is critical, 
the sufficient conditions of Poincare's theorem for the existence of periodic solutions are 

violated. However, a solution being critical does not mean that it cannot be continued in any 

way; all it means is that the method described above is no longer applicable. A suitable 
predictor procedure may undoubtedly be devised by allowing for terms thatarenon-linear func- 
tions of the parameter displacements n; consideration of this case, however, is beyond the 
scope of this paper. 

20. Computer calculations will practically never achieve exact equality dell.\'(T) -- EzJi = 0; 
hence, if the finite increments to it are suitably chosen, the computational scheme will not 
produce a singularity due to "overstepping" the critical orbit. Thus, using the same com- 
putational scheme one can obtain a new family generated by a critical orbit. In so doing, 
however, one can strictly speaking construct only one out of all possible families,i.e.,one 

does not obtain a solution to the branching problem. Nevertheless, a combination 0f.a suitable 
computational experiment of this sort with an analysis of the physical nature of the system 

may provide additional information. 

In conclusion, we mention that the method proposed here has been used to investigate 

periodic motions arising from small librations perpendicular to the plane of revolution of the 

main attractive bodies in the three-dimenional circular restricted three-body problem*. (Karimov 

S.R. and Sokol'skii A.G., Periodic motions in the three-body problem, arising from spatial 

librations in the neighbourhood of Lagrangian solutions. Moscow, MAI, 1987. Deposited at 

VINITI, 24.08.87, 6182-B87.j As an indication of the efficiency of the method we note that 
the computation of a new motion took approximately 90 set on the ES-1061 computer. 
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